

LEADING A REVOLUTION IN BIOWASTE RECYCLING

Insect rearing: from HORECA waste to valuable new raw materials Andrea Antonelli (UNIMORE) Giacomo Benassi (KOUR ENERGY)

Final Meeting - 19 October 2022, Valencia, (Spain)

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 817788

Confidencial

Contents

LEADING A REVOLUTION IN BIOWASTE RECYCLING

- Challenge Needs Solution
- Objectives
- Description of the solution
- Insect rearing
- Pilot plant (bioconverter)
- Fractionation process (pilot plant)
- Main results
- How the solution responds/fits market requirements
- Future

> Challenge - Need

most preferable option

last preferable option

SCAL^TBUR

> Solution

 Waste of raw materials, ingredients and products arising is reduced — measured in overall reduction in waste

Re-use

- Redistribution to people
- Sent to animal feed

Recycle

- · Waste sent to anaerobic digestion
- Waste composted

Recover other value

Incineration of waste with energy recovery

Dispose

- Waste incinerated without energy recovery
- · Waste sent to landfill
- Waste disposed of in sewerage system

The waste hierarchy Waste Framework Directive (WFD;2008/98/EC) **ORGANIC WASTE INSECTS PROTEINS, FAT** and CHITIN

> Objectives

General objective: to obtain high-value products from Black Soldier Fly reared on Retail Organic Materials and HORECA.

Plant implementation with an INPUT and an OUTPUT STAGE

NEW TRL 7 SCALIBUR PLANT

UNIMORE pilot plant for BSF mass rearing

> Insect rearing

Overall rearing performances after 2 full years using HORECA organic waste as feeding substrate

LARVAE PARAMETERS Larvae density - 5 larvae/cm² Quantity of feeding substrate/larvae - 0.75 g Average larvae weight - 0.162 g Production cycle - 12 days Substrate reduction - 80% FLIES PARAMETERS Concentrated period for egg collection (6 days) Fly density of 23000 flies/m³ Production 35-40 g eggs /cycle for 10000 flies

DIET PARAMETERS:

- no water added to the substrate
 - larvae fed only once per cycle

SCALŹBUR

> Pilot plant

Rearing chamber (open)

Nursery

Bioconverter

Features

- Simple and automatic
- Efficient
- Versatile and scalable

SCAL

Fractionation process

Features

- Compact but able to work when arge
- Continuous and efficient
- Versatile and scalab
- Solventless

. .

> Main results

- We have shown that HORECAs are an ideal substrate for the breeding of the black soldier fly.
- It is possible to scale-up the process to have constant and efficient production all year round.
- Larvae can be a valuable source of high quality proteins, fat, and chitin.

How the solution responds/fits market requirements

- Bioconversion period 10 days vs 20 for anaerobic digestion
- Production of complex compounds such as proteins, fats, and chitins.
- Simple plants and longer lifespan than high organic waste disposal plants.

> Future

- Application on organic waste management
- Use of larvae fractions for industrial, feed, and food applications
- Deep reflection on the existing legislation for its conscious and responsible modification

SCALZBUR

This project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nº 817788

Confidencial